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U-DepPLLaMA: Universal Dependency

Parsing via Auto-regressive Large Language

Models

Claudiu Daniel Hromei⇤
Università di Roma, Tor Vergata

Danilo Croce⇤⇤
Università di Roma, Tor Vergata

Roberto Basili†
Università di Roma, Tor Vergata

This paper investigates the rapidly advancing domain of Large Language Models (LLMs) and
their growing potential in various fields. A central focus is the exploration of LLMs, e.g.,
LLaMA, as powerful tools for modeling and representing linguistic information, especially
in the realm of syntax. We aim to evaluate the ability of these models to encode syntactic
information, especially when explicitly supplied, through fine-tuning processes. Traditionally,
Dependency Parsing has relied on specific techniques and dedicated architectures. Our research
shifts this approach, conceptualizing it as a sequence-to-sequence task where Language Models
interpret and transform syntax into bracketed structures that reflect dependency graphs. We
introduce U-DepPLLaMA (Universal Dependency Parsing via auto-regressive LLMs based on
LLaMA), a novel architecture optimized for multilingual, end-to-end Dependency Parsing. Our
experimental evaluation, across 50 datasets in 26 languages from the Universal Dependency
Treebank, shows that LLMs can be effectively trained for dependency parsing without the need
for task-specific architectures. The results are on par with current state-of-the-art methods and
demonstrate resilience across varying sentence complexities and lengths.

1. Introduction

In recent years, Large Language Models (LLMs) have emerged as a dominant paradigm
in the field of natural language processing, revolutionizing the way linguistic data is
interpreted and utilized. The increasing sophistication of these models has opened new
avenues for understanding the depth and breadth of linguistic information they can
capture. This paper centers on probing the abilities of LLMs, particularly focusing on
their capacity to model syntactic information, which is the cornerstone of language
structure. By delving into the intricacies of this syntactic modeling, our research aims
to shed light on the capabilities and potential limitations of LLMs in representing the
complex relationships inherent in such structures. In particular, Dependency parsing
is a relevant stage in natural language processing, playing a vital role in capturing the
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syntactic and semantic relationships within sentences (Kübler, McDonald, and Nivre
2009). Its primary goal is to establish dependencies among words, enabling humans to
grasp how words interconnect and rely on one another within a sentence’s structure
(Tesnière 1959). This understanding is invaluable across various applications, e.g., re-
lation extraction or machine translation. High-performance neural parsing systems can
promote the explanation of emerging grammatical competence, as carried out through
probing techniques (Conneau et al. 2018). One prominent parsing technique is the shift-
reduce method, as exemplified in (Nivre 2008; Chen and Manning 2014). This parser
processes sentences from left to right, word by word while maintaining a buffer for
unprocessed words. Additionally, machine learning-based approaches, such as biaffine
neural networks, as demonstrated in (Dozat and Manning 2016), have proven effective
in capturing complex word dependencies. An intriguing parsing architecture is UDPipe
(Straka and Straková 2017), which focuses on parsing within the Universal Dependency
Framework (de Marneffe et al. 2014). UDPipe stands out because it handles dependency
parsing along with essential tasks like tokenization, morphological analysis, part-of-
speech tagging, and lemmatization for multiple languages, all without relying on exter-
nal data. It employs a Bi-LSTM model fed with end-to-end, character-level, pre-trained,
and contextualized embeddings. The model was trained on a vast dataset spanning
multiple languages, effectively capturing cross-lingual relations. The architecture was
later expanded as UDPipe+ (Straka, Straková, and Hajic 2019), incorporating multilin-
gual BERT (Devlin et al. 2019) into its token representations. However, despite their
state-of-the-art results in various languages, these methods are specifically tailored for
solving structure prediction problems using ad-hoc techniques, neural architectures and
complex optimizations.

More recently, Transformer-based models (Vaswani et al. 2017) have gained pop-
ularity, mainly because of their ability to handle many different tasks, including clas-
sification, regression, and rewriting. These models have the inherent ability to work
with sequences, taking one as input and creating another as output. In particular, the
appeal of sequence-to-sequence modeling for dependency parsing emerged with the
pioneering work of (Aharoni and Goldberg 2017) which defined linearized trees to
generate parsers with sequential decoders. Furthermore, in (Li et al. 2018) the authors
presented an end-to-end seq2seq approach to dependency parsing, allowing the model
to directly predict the relative position of the head of each word within a sentence. It also
incorporated a beam search decoder with tree constraints and sub-root decomposition
to enhance results. Moreover, in (Kondratyuk and Straka 2019b), authors experimented
with a multi-task, multilingual version of BERT (Devlin et al. 2019) pre-trained on
104 languages, capable of predicting not only dependency parsing trees but also lem-
mas, part-of-speech tags, and more for each word in an input sentence. A notable
Transformer-based architecture is LLaMA (Touvron et al. 2023a, 2023b), a large language
model (LLM) with billions of parameters that generates output sequences in an auto-
regressive manner based on input and previously generated tokens.

In this study, we assess the capability of Large Language Models (LLMs) to encode
syntactic structures, particularly focusing on their performance when enhanced with
explicit syntactic data through fine-tuning. This evaluation is essential to understand
how well LLMs, when equipped with targeted refinements, can adapt to and represent
complex linguistic patterns. In particular, we explore the ability of Large Language
Models (LLMs) to perform end-to-end parsing without the need for any task-specific
architectural design and potentially enhance the ability to induce syntactic information
from text data. We focus on the use of fine-tuned LLaMA-based models to predict tree-
shaped representations, by turning sentence syntax into bracketed forms. These brack-
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eted structures, which can be directly translated from sentence dependency graphs,
were previously utilized to represent the sentence’s syntactic structure in a tree format
(Croce, Moschitti, and Basili 2011; Filice et al. 2018). Our goal is to train a system that
can take raw sentences as input and produce these bracketed outputs. Once we have
this bracketed representation, creating the dependency graph becomes straightforward.
This exploration aims to provide insights into the potential of LLMs to transform the
landscape of natural language processing, especially in domains where precise syntactic
understanding is vital.

Experimental results on 50 treebanks in 26 different languages demonstrate that
this approach is not only feasible but also capable of achieving results comparable to
the state-of-the-art, all while requiring minimal training resources, such as training on
a single GPU with “limited” memory. In-depth error analysis shows that a model like
LLaMA generates symbols based on the entirety of the input sequence and this allows
the parsing accuracy to behave independently from the sentence dependency length.
This is promising as it challenges conventional notions about the pitfalls of parsing
longer textual inputs.

In the following sections, we detail our approach in Section 2, present experimental
results in Section 3, and conclude in Section 4.

2. Universal Dependency Parsing via Auto-regressive LLMs

The Transformer architecture (Vaswani et al. 2017) has significantly advanced Natural
Language Processing (NLP). Broadly, Transformers can be classified into three types:
Encoder-only models (e.g., BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019)), which
generate meaningful representations; Decoder-only models (e.g., GPT (Radford et al.
2018), LLaMA (Touvron et al. 2023a, 2023b)), adept at autoregressive language gen-
eration; and Encoder-Decoder models (e.g., T5 (Raffel et al. 2020), BART (Lewis et al.
2019)), combining both encoder and decoder strengths, ideal for tasks like translation
or summarization. Large Language Models (LLMs) have recently set benchmarks in
various NLP tasks. Notably, ChatGPT and the updated LLaMA 2 model, especially its
dialogue-optimized variant LLaMA 2-Chat, stand out. LLaMA 2 incorporates enhance-
ments like a pretraining corpus made of 2 trillion tokens, doubled context length, and
grouped-query attention (Ainslie et al. 2023).

He was most widely recognized for some of his books .

NSUBJ

AUX

ADVMOD ADVMOD

ROOT

CASE

OBL CASE

NMOD

NMOD

PUNCT

Figure 1

Example of a dependency graph associated with the sentence (1).

Modeling tasks using LLMs poses a unique challenge due to their inherent nature
of taking sequences as input and generating sequences as output. To illustrate this, let’s
consider the following sentence:

“He was most widely recognized for some of his books.” (1)
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ROOT

PUNCT

.

OBL

NMOD

booksNMOD

his

CASE

of

someCASE

for

recognizedADVMOD

widelyADVMOD

most

AUX

was

NSUBJ

He

Figure 2

The syntactic parse tree associated with the dependency graph from Figure (1).

The Dependency Graph of this sentence is illustrated in Figure 1, where nodes
represent words, and arcs express syntactic relationships, each labeled with a specific
dependency type. A notable node is ROOT, typically representing the main verb. The
same syntactic information is portrayed as a Dependency Tree in Figure 2, with the
main verb as the actual tree ROOT. In this tree, non-terminal nodes reflect dependency
labels, while terminal nodes depict words from the sentence. For instance, the NSUBJ
arc shows He as the subject, and the OBL arc indicates a nominal phrase with the
word some. The verb recognized is modified by widely, further modified by most via
the ADVMOD relation. Both representations, the dependency graphs and trees, convey
the same information, and transitioning between them preserves this information. The
only potential complexity arises from the non-projectivity of the dependency graph,
which might alter word order within the tree. However, this doesn’t hinder syntactic
analysis since realigning the words to match the original sentence is straightforward.
More details about the conversion algorithm and the application to a non-projective
parse tree are discussed in the Appendix A.

The plain parenthetic representation, computed as in (Croce, Moschitti, and Basili
2011), of the dependency tree in Figure 2 corresponds to:

[ROOT[NSUBJ[He]][AUX[was]][ADVMOD[ADVMOD[most]][widely]][recognized]

[OBL[CASE[for]][some][NMOD[CASE[of]][NMOD[his]][books]]][PUNCT[.]]]
(2)

The idea is thus straightforward: we aim to employ an LLM to transform the
example sentence 1 into its parenthetical format 2, using solely raw text, without the
aid of intermediate additional information like morphological data, part-of-speech tags,
or lemmatization. In particular, this sequence-to-sequence model is obtained by fine-
tuning the LLaMA2 7B1 and 13B2 models (Touvron et al. 2023b). As of this writing and
inspired by (Hromei et al. 2023) which applied a single architecture to solve a plethora
of linguistic tasks, these models represent the optimal balance between model accuracy
and size across a wide range of tasks (Touvron et al. 2023b).

It’s essential to understand that LLaMA2 operates as an auto-regressive sequence-
to-sequence model, processing input text and generating output text. Upon analyz-
ing an input sentence, the model’s first task is to identify and generate the ROOT

1 https://huggingface.co/meta-llama/Llama-2-7b-hf

2 https://huggingface.co/meta-llama/Llama-2-13b-hf
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node, which typically corresponds to the primary verb or central idea in the sentence.
Once established, the model’s attention mechanism begins to delineate the primary
nodes directly connected to the ROOT prefix, effectively capturing the main syntactic
constituents or “branches” that sprout from this root. At this juncture, the model is
expected to employ a recursive strategy. For each of these primary nodes, the model
drills down to identify and generate its corresponding subtrees. As it descends deeper
into these syntactic branches, the phenomena it encounters tend to be more localized
to specific sentence segments and are, thus, generally more straightforward. Essentially,
the model unpacks each subtree (i.e., syntactic chunks), always maintaining focus on
the nodes and words that haven’t been processed yet. First, “He” will be focused,
then “was”, then “most widely” and so on. This behavioral pattern should emerge as
a result of the specified sentence output prefix notation, as shown in Equation 2. In this
context, the ROOT assumes the position of the primary label, succeeded sequentially
by the label and corresponding word of the initial element. This linear configuration
facilitates a systematic rewriting of the sentence, affording focused attention to each
subtree originating from the central ROOT. Throughout this parsing endeavor, the model
is anticipated to exploit the attention mechanism to effectively handle short and long-
range dependencies. The recursive nature of this approach ensures that each segment of
the sentence, from broad constituents down to specific syntactic details, is thoroughly
and systematically examined. We anticipate that the language model should proficiently
handle this parenthetical form, considering its resemblance to the recursive structures
prevalent in programming languages like C and Java. Many language models, including
LLaMA, have been extensively pre-trained on these languages, equipping them with a
foundational understanding of similar syntactic patterns, typical in the use of parenthe-
ses in functional expressions.

Furthermore, given the inherent multilingualism of syntactic information (as
demonstrated by the Universal Dependency Annotation scheme of (McDonald et al.
2013)) and the capability of LLMs to handle multiple languages, we will apply this
framework to a multilingual model, aggregating data across as many languages as
possible to achieve a unique, language-independent architecture. It’s important to note
that LLaMA2 was not pre-trained on data from every existing language. Instead, it was
trained on a collection of texts in 27 languages, with a vast majority of almost 90% of
the sentences being in English. The remaining languages make up less than 1% each of
the training data (the complete list is provided in Appendix B). To gauge the model’s
efficacy, we will focus solely on data from those specific languages. While this approach
doesn’t address challenges associated with low-resource languages (not considered in
the LLaMA2 pre-training), we do not wish to attribute potential shortcomings in our
initial experiments to a lack of pre-training data. Nonetheless, there are no constraints
on training LLaMA2 with data from those languages, or in cross-lingual parsing scenar-
ios, as highlighted by (Sherborne and Lapata 2022). We will thus rely on data available
from the Universal Dependency Treebank3 and refer to our model as U-DepPLLaMA:
Universal Dependency Parsing via Auto-regressive LLMs based on LLaMA.
Efficient fine-tuning techniques. Training and fine-tuning large-scale models typically
necessitate vast computational resources, often requiring an array of GPUs. An efficient
solution has been proposed with the advent of Low-Rank Adaptation (LoRA, from (Hu
et al. 2022)). This method predominantly freezes the pre-trained model’s weights, while
introducing trainable rank decomposition matrices within each Transformer layer, sig-

3 https://universaldependencies.org/
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nificantly reducing the trainable parameters without any added inference delay. The
Quantized-LoRA technique (Q-LoRA), as detailed in (Dettmers et al. 2023), further
enhances this efficiency. It permits the fine-tuning of a 7-billion-parameter model (7B)
on a conventional 16GB GPU, preserving full 16-bit task performance. This is achieved
by propagating gradients via a 4-bit quantized frozen pre-trained model within the
LoRA structure. For our purposes, we adopted the QLoRA-based method, which allows
for the training of a combined architecture where only a small fraction of parameters
undergoes fine-tuning, leaving the majority of LLaMA’s parameters untouched during
the process. After this fine-tuning phase, only the fine-tuned component remains (the
adapters), which can be integrated with a model like LLaMA for dependency parsing4.

3. Experimental Evaluation

Objectives. We primarily investigate the potential of the proposed model for multi-
lingual dependency parsing. We emphasize that this model isn’t inherently task-
specific; its uniqueness stems from the distinct input and output forms. A crucial ques-
tion is its robustness across languages, especially those it has been minimally exposed
to during pre-training (all except English). We also question the influence of sentence
complexity on parsing quality. Concurrently, we explore the benefits and limitations of
employing architectures ranging from 7 billion to 13 billion parameters. Lastly, we eval-
uate LLaMA2’s end-to-end capability, where it’s tasked with autonomously deriving
tokenization from ‘raw’ sentences and producing the resultant dependency graph.

Dataset and Evaluation metrics. In our experiments, we narrowed our focus to the
Universal Dependency Parsing dataset version 2.35. Our approach aligns with the
state-of-the-art architecture for dependency parsing proposed by (Straka, Straková, and
Hajic 2019). From the Universal Dependency Parsing dataset, our concentration was
particularly on the subset whose languages were supported by LLaMA2, as indicated in
their report (Touvron et al. 2023b). This subset included 27 languages, from English and
Finnish to Korean (all shown in the first column of Table 1). Unfortunately, we discarded
texts written in Vietnamese because we encountered problems with encoding and the
LLaMA2 tokenizer. Our dataset thus contains examples written in 26 languages. For
languages like Czech, Norwegian, and Russian with over 30, 000 examples, we limit
the training datasets to a maximum of 30, 000 sentences per language, retaining bal-
anced datasets across languages. Our neural architecture was trained on the aggregated
dataset of all supported languages after the cutoff reduction, which consisted of 392, 088
training examples, 59, 084 development sentences, and 62, 069 testing examples. To
ensure consistency with the evaluation framework presented in (Straka and Straková
2017; Straka, Straková, and Hajic 2019), we have chosen to employ two pivotal metrics
for assessing the performance of the LLaMA model: Unlabeled Attachment Score (UAS)
and Labeled Attachment Score (LAS). UAS evaluates the precision of the model’s depen-
dency tree structure, verifying the correct generation of head and dependency arcs. In
contrast, LAS offers a more comprehensive evaluation by also gauging the accuracy of
the assigned dependency labels for each dependency arc.

4 The model, along with all the necessary software for training and utilizing U-DepPLLaMA, is publicly
released on a dedicated GitHub page at https://github.com/crux82/u-deppllama according to
the LLaMA https://ai.meta.com/llama/license/ and UD
https://github.com/UniversalDependencies/LICENSE licenses.

5 http://hdl.handle.net/11234/1-2895
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Experimental details. The model training process employed PyTorch and the Hug-
gingface library, complemented by the Peft packages, for the implementation of the
Q-LoRA technique. The LLaMA2 models were subjected to 3 training epochs, utilizing
a learning rate of 3 · 10�4 and a batch size of 16. To optimize the model’s performance,
a linear scheduler with warmup was employed, incorporating a warmup ratio of 0.1.
Throughout the training process, Q-LoRA with 4-bit precision was utilized to enhance
the transformer’s Wq , Wv , Wk, Wo, Wgate, Wdown, Wup and Wlm_head modules, as de-
tailed in the work of (Dettmers et al. 2023). The LoRA matrices featured a matrix rank
(R) of 8 and a parameter ↵ of 16. The training took place on a single NVIDIA H100 GPU
equipped with 80GB total memory, although only a maximum of 20GB (using Nvidia
MIG) was utilized during both training and inference. Training time took about 160
hours for U-DepPLLaMA 7B and 190 hours for U-DepPLLaMA 13B on a single GPU.
This is particularly noteworthy as it demonstrates the applicability of Q-LoRA even on
standard architectures with the two smallest available models, having 7 and 13 billion
parameters, without necessitating significant computing power6. All hyper-parameters
were selected using a subset comprising 10% of the training and development sets. In
the final generation process, we opted against sampling, as our objective was not to
increase sequence variability but to identify the best sequence that explains the given
sentence. Consequently, we adopted a greedy search policy. While initial experiments
considered beam search to generate an optimal tree structure, preliminary results on a
subset of the data indicated a potential increase of 0.2% in UAS and/or LAS. However,
this came at a significant computational cost, with decoding time increasing by nearly
an order of magnitude. As a result, we chose the greedy approach to prioritize efficiency
over a modest performance boost.
Results Discussion. In this section, we present our experimental results, specifically
focusing on the comparison between our method and the state-of-the-art linguistic
analysis system, UDPipe2.0 (Straka, Straková, and Hajic 2019). The most notable dis-
tinction between our approach and UDPipe2.0 lies in their architectures. UDPipe2.0
is a task-specific architecture, weaving together recurrent networks, attention-based
biaffine networks, and diverse word embedding techniques. It also tackles a plethora of
tasks beyond parsing, such as POS tagging and lemmatization. Additionally, it boasts
training on a vast 89 datasets across 54 languages. In contrast, our model leans heavily
on LLaMA2. Its uniqueness does not stem from architectural alterations but rather
from its prompting method. It was trained on a narrower scope of 50 datasets for lan-
guages supported by LLaMA. Thus, while our architecture inherently possesses more
parameters, it fundamentally remains a task-agnostic language model. We investigated
different output formats as in (Li et al. 2018; Kondratyuk and Straka 2019a) where
sentences such as “The dog runs” are rewritten in pseudo-sentences, such as “R1-det
R1-nsubj ROOT”. An explicit counter of the relative distance between the head and
modifier is here adopted to label the dependency relation. However, LLMs are not
explicitly designed for precise numerical tasks, and accurately measuring distances
between tokens can be very hard. This limitation was especially observed in labeling
decisions involving long-distance dependencies, such as correctly attaching a punctu-
ation mark to a distant ROOT. Owing to these complexities and space limitations, we
have omitted these unstable results, as they do not accurately reflect the model’s true
performance. In Table 1, the first columns present the UAS and LAS performance met-
rics for UDPipe2.0 and its enhanced variant, UDPipe2.0++. The key distinction between

6 Reducing the batch size to 4, they can be trained on an Nvidia T4 too, with 16GB of memory.
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Table 1

Results in terms of UAS and LAS for UDPipe 2.0, UDPipe 2.0++ with the different embeddings,
U-DepPLLaMA 2 7B and 13B with Gold Standard (GS) Tokenization and the End-to-End version
of U-DepPLLaMA 2 7B. These last results are in italics as they are not comparable with the
others because the End-to-End model is trying to solve a much more complex task. The best
result for each treebank is highlighted in bold.

Language
UDPipe 2.0 UDPipe 2.0++

U-DepPLLaMA 7B

GS Tokenization

U-DepPLLaMA 13B

GS Tokenization

U-DepPLLaMA 7B

End-to-End

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Bulgarian-BTB 93,38% 90,35% 95,34% 92,62% 96,21% 93,55% 96,37% 93,77% 95,82% 93,27%
Catalan-AnCora 93,22% 91,06% 94,49% 92,74% 94,28% 92,60% 94,53% 92,86% 94,22% 92,47%
Chinese-GSD 84,64% 80,50% 90,13% 86,74% 85,35% 81,09% 86,20% 82,21% 83,40% 78,69%
Croatian-SET 91,10% 86,78% 93,20% 89,35% 93,09% 88,47% 93,71% 89,51% 93,07% 88,60%
Czech-CAC 92,99% 90,71% 93,59% 91,50% 93,39% 91,19% 94,48% 92,71% 93,50% 91,35%
Czech-CLTT 86,90% 84,03% 89,59% 87,01% 93,14% 90,84% 91,82% 89,55% 94,38% 92,28%
Czech-FicTree 92,91% 89,75% 94,34% 91,87% 93,58% 90,94% 95,30% 93,44% 93,74% 91,05%
Czech-PDT 93,33% 91,31% 94,43% 92,56% 93,51% 91,44% 94,85% 93,22% 93,45% 91,41%
Danish-DDT 86,88% 84,31% 89,32% 87,24% 87,29% 84,63% 88,04% 85,55% 87,77% 84,96%
Dutch-Alpino 91,37% 88,38% 94,12% 91,78% 94,07% 91,78% 94,32% 91,93% 92,94% 90,24%
Dutch-LassySmall 90,20% 86,39% 93,07% 89,88% 94,33% 91,13% 94,19% 91,07% 94,19% 91,29%
English-EWT 89,63% 86,97% 92,50% 90,40% 92,19% 89,91% 92,32% 90,05% 91,85% 89,44%
English-GUM 87,27% 84,12% 91,47% 88,80% 90,84% 87,92% 90,42% 87,47% 90,71% 87,88%
English-LinES 84,15% 79,71% 87,28% 83,48% 88,25% 84,94% 88,23% 84,97% 88,21% 84,71%
English-ParTUT 90,29% 87,27% 93,75% 91,12% 93,05% 90,41% 92,96% 90,29% 91,43% 88,85%
Finnish-FTB 90,68% 87,89% 91,68% 89,02% 85,51% 80,60% 86,74% 81,95% 91,31% 88,53%
Finnish-TDT 89,88% 87,46% 91,66% 89,49% 85,96% 81,69% 86,90% 83,01% 91,33% 88,74%
French-GSD 90,65% 88,06% 92,55% 90,31% 93,51% 91,21% 94,00% 91,90% 93,80% 91,51%
French-ParTUT 92,17% 89,63% 94,51% 92,47% 92,03% 89,42% 91,36% 88,75% 91,32% 88,34%
French-Sequoia 92,37% 90,73% 94,88% 93,81% 92,02% 89,89% 91,92% 89,47% 92,12% 89,54%
French-Spoken 82,90% 77,53% 86,27% 81,40% 85,66% 80,24% 84,77% 78,92% 85,30% 80,29%
German-GSD 85,53% 81,07% 88,11% 84,06% 88,34% 84,16% 88,22% 84,14% 87,82% 83,65%
Hungarian-Szeged 84,04% 79,73% 88,76% 85,12% 85,42% 80,59% 86,87% 82,03% 86,01% 81,24%
Indonesian-GSD 85,31% 78,99% 86,47% 80,40% 86,43% 80,05% 86,09% 80,08% 86,49% 80,32%
Italian-ISDT 93,49% 91,54% 94,97% 93,38% 95,20% 93,61% 95,65% 94,09% 95,02% 93,39%
Italian-ParTUT 92,64% 90,47% 95,36% 93,38% 96,65% 94,59% 96,62% 94,42% 96,20% 93,92%
Italian-PoSTWITA 86,03% 81,78% 87,25% 83,07% 87,24% 83,40% 87,65% 83,87% 87,33% 83,35%
Japanese-GSD 95,06% 93,73% 95,55% 94,27% 93,32% 90,83% 92,53% 89,85% 87,18% 84,14%
Korean-GSD 87,70% 84,24% 89,38% 86,05% 79,81% 70,33% 80,21% 70,56% 85,66% 80,88%
Korean-Kaist 88,42% 86,48% 89,35% 87,54% 86,00% 82,63% 87,15% 83,79% 87,17% 84,82%
Norw.-Bokmaal 92,39% 90,49% 93,78% 92,19% 93,81% 92,20% 94,28% 92,78% 94,34% 92,70%
Norw.-Nynorsk 80,09% 75,04% 82,64% 78,08% 86,55% 83,16% 87,02% 83,68% 86,57% 83,14%
Norw.-NynorskLIA 68,08% 60,07% 71,42% 64,12% 70,87% 64,41% 70,75% 64,23% 70,95% 64,24%
Polish-LFG 96,58% 94,76% 97,44% 96,03% 96,22% 94,11% 96,38% 94,47% 96,28% 94,05%
Polish-SZ 93,39% 91,24% 95,73% 94,25% 94,11% 89,67% 94,18% 89,63% 93,61% 89,18%
Portuguese-Bosque 91,36% 89,04% 92,69% 90,70% 91,22% 87,66% 92,12% 88,64% 89,77% 84,83%
Portuguese-GSD 93,01% 91,63% 94,74% 93,71% 94,44% 92,92% 94,54% 93,13% 94,18% 92,35%
Romanian-Nonst. 89,12% 84,20% 89,61% 84,78% 88,71% 83,73% 89,88% 85,32% 89,21% 83,28%
Romanian-RRT 91,31% 86,74% 92,41% 88,05% 92,47% 88,18% 92,72% 88,46% 92,68% 88,27%
Russian-GSD 88,15% 84,37% 90,74% 87,51% 90,10% 85,56% 91,16% 87,03% 90,76% 86,38%
Russian-SynTagRus 93,80% 92,32% 94,92% 93,68% 94,45% 92,68% 95,21% 93,62% 94,41% 92,65%
Russian-Taiga 75,45% 69,11% 80,74% 75,65% 82,94% 77,08% 84,91% 79,27% 83,42% 77,34%
Serbian-SET 92,70% 89,27% 94,57% 91,65% 95,24% 91,85% 96,14% 92,52% 95,87% 92,49%
Slovenian-SSJ 92,96% 91,16% 94,81% 93,49% 94,14% 92,55% 94,43% 93,14% 94,04% 92,51%
Slovenian-SST 73,51% 67,51% 77,23% 71,79% 77,12% 71,06% 76,65% 71,06% 76,78% 70,67%
Spanish-AnCora 92,34% 90,26% 93,75% 92,03% 93,31% 91,21% 93,41% 91,38% 93,51% 91,44%
Spanish-GSD 90,71% 88,03% 92,32% 90,11% 91,26% 87,76% 90,96% 87,65% 89,37% 85,17%
Swedish-LinES 86,07% 81,86% 88,16% 84,55% 89,43% 85,98% 90,05% 86,91% 89,63% 86,21%
Swedish-Talbanken 89,63% 86,61% 92,42% 90,16% 92,92% 90,64% 93,03% 90,90% 92,74% 90,40%
Ukrainian-IU 88,29% 85,25% 91,65% 89,36% 93,40% 91,37% 93,89% 91,89% 93,35% 91,30%

Average 88.88% 85.60% 91.10% 88.26% 90.37% 86.96% 90.72% 87.42% 90.48% 87.16%

the two lies in UDPipe2.0++’s integration of BERT transformer and other word/char-
acter embeddings for input sentence representation, resulting in a noticeable boost in
efficacy across all treebanks. It’s worth noting that both methods rely on gold-standard
tokenization. Therefore, our initial experiments also adopted this simplification for a
consistent comparison. Then, we report our architectures of U-DepPLLaMA with 7 and
13 billion parameters, respectively, both based on a Gold Standard tokenization of the
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input text. The 7B version shows improvements for some treebanks, such as Czech-
CLTT, Dutch-LassySmall, German-GSD, and Italian-PoSTWITA, with on-par performance
for other Romance languages but drastic drops for languages that are significantly
different from English and its derivatives. The 13B version shows better results as
the size of parameters increases, reaching top performance for Bulgarian, Croatian,
Czech, French-GSD, Italian, Norwegian, Romanian, Russian, Serbian, Swedish, and
Ukrainian. The performance drop is especially pronounced in languages like Korean,
Chinese, and Finnish, which differ greatly from English, LLaMA’s primary training
language. While UDPipe++ remains consistently effective across most languages, in
Chinese-GSD, U-DepPLLaMA lags behind UDPipe++ by over 4%, and nearly 10% for
Korean-GSD. Exploring models with balanced linguistic exposure during pre-training
might be insightful, but their effectiveness, even with limited language-specific data,
is notable. Finally, we report the performance of our U-DepPLLaMA 7B End-to-End,
which solves the task of Dependency Parsing in an end-to-end manner: that is, no Gold
Standard tokenization is required. It simply takes the sentence as input and produces
the bracketed output directly, ready to be transformed into a Dependency Tree. This
process is computed all at once during the inference of the unique model for all the
languages we trained it on. Its results are reported in italics as this model is solving
a more complex task since it does not rely on GS tokenization. The model without
gold standard tokenization not only matches but even surpasses the results of the 7B
model with gold standard tokenization. This suggests that the language model might
be more comfortable with unaltered real-world text, free from artificial tokenization
adjustments. Additionally, the added complexity seems to mitigate potential overfitting
effects, prompting the model to perform better.

In the last row of Table 1, we showcase mean UAS and LAS scores for each model.
While UDPipe2.0++ remains the leading solution, our models closely compete. We con-
trast UDPipe’s task-specific, feature-engineered approach with our universal LLaMA
Language Model that generates DP Trees consistently across languages without archi-
tectural adjustments. In an evaluation across 50 treebanks, both architectures topped
in 25 cases, revealing the potential of embedding expertise into a Language Model
for synthetic outputs. Yet, the computational demands of the LLaMA models, both in
training and inference, are considerably higher than UDPipe, given the higher number
of involved parameters. Despite the obtained UAS/LAS, to make U-DepPLLaMA appli-
cable, the tree output by the model must be a well-structured tree structure. In 0.45%
of the sentences generated by the 7B parameter model, this isn’t the case, leading to
those sentences being discarded entirely. This drops to 0.31% for the 13B model. Without
employing gold standard tokenization, the percentage of incorrect sentences for the 7B
model rises from 0.45% to 1.44%. We anticipate larger models might mitigate this issue,
though further experiments are needed. Occasionally, the model experienced hallucina-
tion issues. While it doesn’t add new terms, it misses some or switches the word order,
particularly in non-projective tree cases (as detailed in Appendix A). Correcting this
typically involves realigning words to the original sentence order, but retaining word
connections and relationships produced by the U-DepPLLaMA. For missing words,
connecting the term to the tree’s root (always present) suffices. However, such recovery
measures are needed in under 7% of instances. Still, more in-depth manual analysis is
essential to determine whether the primary cause of this swap is consistently due to
non-projectivity or not.

Error Analysis. Initially, we seek to understand the system’s error magnitude to gauge
its potential influence on analyses or systems leveraging syntactic information. With the
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13B U-DepPLLaMA model, 60% of sentences display no UAS errors, and about 50% are
error-free in LAS metrics. Considering that sentences typically contain an average of 17
words, it’s notable that nearly 80% of sentences have at most one error, emphasizing the
model’s resilience. Conversely, sentences with more than five incorrectly linked words
represent roughly 6%. For a comprehensive breakdown, please consult Appendix C.

80%

85%

90%

95%

1-10 11-20 21-30 31-40 41-50
U-DepPLLaMA 7B U-DepPLLaMA 13B

Figure 3

UAS vs Sentence Length

Inspired by studies such as (McDonald and Nivre 2007), we delved into assessing
the system’s performance based on sentence complexity, starting with an analysis cen-
tered on sentence length. In Figure 3, we display the UAS scores for our 7B and 13B
parameter models. Sentences are categorized into length-based bins, ranging from 1 to
10 words and expanding in increments of ten, encompassing over 99% of the dataset
up to the bin containing sentences with 50� 60 words. Interestingly, the UAS remains
fairly stable across sentence lengths, averaging about 91% for the 7B model and 92%
for the 13B model7. This consistency indicates that our models maintain robust parsing
performance, even for longer, structurally complex sentences. The LLaMA’s capacity to
sustain these UAS scores across varied sentence lengths, being an Autoregressive Gen-
erative Model that processes sentences in their entirety, underlines its comprehensive
and robust processing abilities.

86%
88%
90%
92%
94%
96%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
U-DepPLLaMA 7B U-DepPLLaMA 13B

Figure 4

UAS versus Length of the Dependency Arc

Another pivotal aspect concerning complexity is the system’s quality relative to the
length of syntactic relations. This becomes crucial in assessing if a LLaMA-based model
can effectively manage long-range dependencies, leveraging an attention mechanism
spanning the entire sentence. As illustrated in Figure 4, while there’s a slight perfor-
mance drop for relations involving immediate adjacent words, the model displays a
remarkably consistent performance, virtually always hovering between 91% and 93%,
regardless of the relation distance. This consistency underscores the model’s adeptness
at managing varying dependency lengths. The trend for LAS closely mirrors this, as

7 The average UAS in Table 1 reflects the mean accuracy over the 50 datasets, while Figure 3 shows an
average based on all sentences, not adjusted for the varying sizes of individual datasets.
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Figure 5

LAS versus Length of the Dependency Arc

depicted in Figure 5. However, a marginally steeper decline is evident, hinting that the
model, while apt at establishing the syntactic connection, occasionally misinterprets the
syntactic purpose of a word. Intriguingly, the 13B model shines particularly in longer
distances, as evidenced by the minimal difference between the two models for short
relations and a more pronounced divergence for extended ones.
Linguistic Analysis. In Table 2 we show a quantitative analysis concerning the types
of relations that need to be predicted, along with the number and percentage of errors
generated by our models. First and foremost, we encounter the PUNCT relation, ac-
counting for 24% and 25% of the errors. This suggests issues with correctly associating
punctuation marks like periods and commas with the words they depend on. It is
worth noting that such errors may be considered marginal and could be reasonably
overlooked. Of greater significance is the misprediction of the ROOT relation, occurring
in 6% of cases. These errors entail that the entire sentence may be deemed incorrect, as
the ROOT serves as the pivotal word from which the entire sentence’s meaning derives.

Table 2

Top errors (plain numbers and percentages) concerning the relation for the two sizes of the
U-DepPLLaMA models, cut above 5%. These constitute almost 75% of the errors from our
models.

Relation
U-DepPLLaMA-7B U-DepPLLaMA-13B

#errors percentage #errors percentage

PUNCT 17,345 24% 16,538 25%
NMOD 7,980 11% 7,371 11%
ADVMOD 6,970 10% 6,579 10%
CONJ 6,150 9% 5,476 8%
OBL 5,954 8% 5,469 8%
NSUBJ 4,557 6% 4,229 6%
ROOT 3,952 6% 3,717 6%

In our qualitative analysis of the 13B model’s LAS evaluation, we found that of
about 80,000 misassigned words, 55% had the correct label. Notably, this accuracy is
achieved without using specialized Part-of-Speech features or grammatical generaliza-
tions, which are used in many parsers such as UDPipe. These capabilities are implicitly
embodied by the language model and enhanced during fine-tuning. Concerning the real
Part-of-Speech (PoS) tags of these words, the most prevalent errors (occurring in over
5% of words) are found in nouns (23.4%), punctuation symbols (19%), verbs (12.8%),
and adverbs (8.1%). For nouns, out of the 18, 700 noun-related errors, 40% have the
correct label but are incorrectly attached to a different word. These attachment errors
exhibit irregular patterns in terms of the types of incorrect relations. The most common
mistake, at 15%, is caused by the erroneous attachment of nouns and verbs, resulting in
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the interchange of “OBL” with “NMOD”. This is primarily attributed to arc introduction
errors, although the label is coherent with respect to the incorrect attachment. In the
case of verbs, nearly 40% of errors involve incorrect attachments while the label remains
correct. In the remaining cases, there is little regularity in the errors: in 5% of cases, a
main verb (ROOT) is swapped with a subordinate verb, resulting in an attachment error,
with the “ROOT” label being replaced by “CONJ”, and in 3.9% of cases, an error occurs
between “ROOT” and “PARATAXIS”. For adverbs, in 63% of cases, the label is correct,
but the attachment is not. The remaining cases exhibit varying irregularities, with the
most common being the interchange between “ROOT” and “ADVMOD”, although this
only occurs in 3% of cases.

4. Conclusions

In this investigation, we introduce U-DepPLLaMA, a framework for employing Large
Language Models (LLMs) in the domain of syntactic analysis through Dependency
Parsing. By conceptualizing parsing as a sequence-to-sequence task, our model trans-
forms input sentences into bracketed forms, subsequently mapped onto comprehensive
dependency parse trees. Evaluated across 50 datasets spanning 26 languages from the
Universal Dependency Treebank, our approach consistently demonstrates competitive
performance, underscoring its efficacy without necessitating task-specific configura-
tions. The model demonstrates robustness against varying sentence complexities and
lengths, indicating a strong capacity for understanding sentence relationships. While
our results validate the model’s adeptness in syntactic processing, there remains a need
for deeper investigation into the latent syntactic knowledge these models harbor, as
suggested by studies like (Hewitt and Manning 2019).

Future research directions include probing the benefits of integrating explicit syn-
tactic information during LLM pre-training or fine-tuning. Such exploration could
further refine their interpretative abilities, particularly in tasks requiring a nuanced
understanding of language structures. Moreover, examining the impact of syntactic
information in multimodal models that involve semantic understanding could signif-
icantly enhance the robustness and versatility of LLMs, as demonstrated by (Hromei
et al. 2024). Another interesting direction should focus on adapting U-DepPLLaMA for
low-resource languages and exploring cross-lingual learning techniques. Investigating
different attention mechanisms within LLMs could also improve the parsing of complex
or lengthy sentences. Applying these models to tasks like semantic analysis or text
summarization offers a promising direction, leveraging their syntactic understanding.
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Appendix A: Generating dependency trees from dependency graphs

The recursive pseudo-code utilized to derive the parenthetic form from a dependency
graph is detailed in Table 1. It assumes that dependency graphs are loaded using the
conllu8 python library.

The code defines two methods:

1. tree2string_grct: This function accepts a dependency tree (for
instance, loaded using the collu library) and yields the parenthetic form
we have adopted in this study.

2. tree2list_grct: This function recursively constructs a string in
parenthetic form for a given subtree rooted at ’node’. It begins by adding
the dependency relation. The boolean flag is_deprel_written ensures
that the current node’s token form (node.token["form"]) is inserted in
the correct position and only once. For nodes without children, the lexical
form is directly appended. For nodes with children, the function checks
the order of tokens and ensures they are appropriately nested, with
recursive calls to process the entire tree. Finally, it concludes the string
representation for the subtree.

While the aforementioned function handles projective graphs seamlessly, it may
face challenges with non-projective ones. Figure 1 showcases the non-projective depen-
dency graph for the sentence “I guess you get what you pay for.” However, as illustrated
by the tree in 2, the tree can be generated straightforwardly. It’s noteworthy that the
phrase “what you pay for” was reordered to “what for you pay”. During fine-tuning the
model, such derived non-projective trees are simply provided to the model (though
they represent a minor fraction of the entire Universal Dependency set). During tagging,
realigning the sentences to their original order while retaining the dependency relations
will be sufficient.

I guess you get what you pay for .

NSUBJ

ROOT

NSUBJ

CCOMP

CASE

OBL

NSUBJ

CCOMP

PUNCT

Figure 1

Example of a non-projective dependency graph associated with the sentence “I guess you get what
you pay for.”.

8 https://pypi.org/project/conllu/
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Table 1

Pseudocode in python to generate the parenthetic form

# This method takes into input a dependency graph, e.g., loaded with the collu

library, and generates the parenthetic

form

def tree2string_grct(node):

my_list = []

tree2list_grct(node, my_list)

return " ".join(my_list)

# This method takes in input a subtree rooted at ’node’ and generates a string

in a parenthetic form

def tree2list_grct(node, mylist = []):

# First the dependency relation is added

mylist.append("[" + node["deprel"])

# Boolean flag used to ensure that the current node’s token form (node.token

["form"]) is added once in the

correct position

is_deprel_written = False

# No children, so the lexical node can be written

if len(node.children) == 0:

mylist.append("[" + node["form"] + "]")

# For each child, write the node’s token form if needed or recursively call

the tree2list_grct method

for i, child in enumerate(node.children):

if child.token["id"] > node.token["id"] and not is_deprel_written:

mylist.append("[" + node.token["form"] + "]")

is_deprel_written = True

# Recursive call

tree2list_grct(child, mylist=mylist)

if i == len(node.children) - 1 and not is_deprel_written:

mylist.append("[" + node.token["form"] + "]")

is_deprel_written = True

# Close the string associated with the subtree

mylist.append("]")

ROOT

PUNCT

.

CCOMP

CCOMP

payNSUBJ

you

OBL

CASE

for

what

getNSUBJ

you

guessNSUBJ

I

Figure 2

The syntactic parse tree associated with the dependency graph from Figure (1).

Appendix B: Distribution of the languages for pre-training LLaMA

In assessing the data distribution disparities between the pre-training phase of LLaMA
and our fine-tuning datasets (Train30k, Dev, and Test sets), we provide an illustrative
breakdown in Table 2.
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Table 2

Data distribution
Code Language LLaMA Train30k Dev Test

en English 89,70% 5,09% 6,39% 6,32%
unk unknown 8,38% - - -
de German 0,17% 3,52% 1,35% 1,57%
fr French 0,16% 4,75% 4,91% 2,75%
sv Swedish 0,15% 1,82% 2,54% 3,49%
zh Chinese 0,13% 1,02% 0,85% 0,81%
ru Russian 0,13% 7,45% 12,12% 12,85%
es Spanish 0,13% 7,27% 5,17% 3,46%
nl Dutch 0,12% 4,61% 2,36% 2,37%
it Italian 0,11% 5,17% 2,35% 2,11%
ja Japanese 0,10% 1,82% 0,86% 0,89%
pl Polish 0,09% 5,07% 4,69% 4,55%
pt Portuguese 0,09% 4,59% 3,00% 2,71%
vi Vietnamese 0,08% 0,36% 1,35% 1,29%
uk Ukrainian 0,07% 1,35% 1,10% 1,39%
ko Korean 0,06% 6,99% 5,10% 5,28%
ca Catalan 0,04% 3,35% 2,89% 2,97%
sr Serbian 0,04% 0,75% 0,79% 0,79%
cs Czech 0,03% 7,65% 19,14% 19,66%
fi Finnish 0,03% 6,94% 5,48% 5,51%
hu Hungarian 0,03% 0,23% 0,75% 0,72%
id Indonesian 0,03% 1,14% 0,95% 0,90%
no Norwegian 0,03% 7,63% 7,28% 7,26%
ro Romanian 0,03% 4,08% 3,05% 2,87%
bg Bulgarian 0,02% 2,27% 1,89% 1,80%
da Danish 0,02% 1,12% 0,95% 0,91%
hr Croatian 0,01% 1,78% 1,44% 1,70%
sl Slovenian 0,01% 2,18% 1,24% 3,06%

During the pre-training phase of LLaMA2, English dominates, accounting for
nearly 90% of the data. This stark bias towards English is contrasted by the top language
in our Train30k set, which is Czech, comprising only 7.65%.

Each row in Table 2 presents a language considered in this study. The second
column highlights the proportion of that language’s representation in LLaMA2’s pre-
training data. The subsequent columns provide the percentages of examples for that
particular language in our Train30k, Dev, and Test datasets.

It’s important to clarify the naming convention of Train30k. Datasets for languages
with more than 30,000 examples were uniformly sampled across all available datasets.
The goal was to ensure a maximum of 30,000 examples per language, with each source
dataset being equally represented. This strategy addresses potential biases and ensures
a balanced representation across various datasets.

Appendix C: Detailed Analysis of Sentence-level Errors in UAS and LAS Metrics

In Figure 1, we present a comprehensive visualization of the percentage of sentences in
our test set of 62,069 sentences, which exhibit specific counts of errors. This distribution
allows for a granular understanding of the model’s syntactic accuracy.

Panel a) focuses on the Unlabeled Attachment Score (UAS) metric. Here, it’s re-
markable to observe that sentences with no UAS errors comprise a significant 60% of
the test set when the 13B size U-DepPLLaMA model is employed. Moreover, when
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(a) (b)

Figure 1

UAS (a) and LAS (b) for sentences with an increasing number of errors

aggregating sentences that exhibit 0 or 1 error, this rises to nearly 80%, an impressive
feature, especially considering the average sentence length stands at 17 words.

Subsequently, panel b) provides insights into the Labeled Attachment Score (LAS)
metric. A direct comparison between the two panels readily highlights the superior
performance of the model with 13 billion parameters. Furthermore, as expected, the
LAS figures are generally lower, a direct result of its being a subset of the instances
where the attachment is incorrect (captured under UAS) and additionally carries an
erroneous syntactic relation label.
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